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J. Phys A: Math. Gen. 25 (1992) 3797-3811. Printed in thc UK 

A derivation of the Nambu-Goto action from invariance 
principles 

D R Grigoret 
Theory Division. CERN. Geneva, Switzerland 

AbslracL Wc show that the Nambu4oto action of string theory o n  be obtained 
h m  the invariance with respect to the leparametrizaiation of lhe world sheet and the 
invariance with respect to the Paincar6 transformations. The proof is based on the 
geomelrical L+!rdngian approach of Sauriau. In a three-dimensional Minkowski space a 
Chern-Simons term can appear. 

1. Introduction i 
I 

The Nambu-Goto action for the relativistic string is usually postulated by analogy 
with the relativistic action for a point-like particle (see for instance [l]). On the other 
hand, it is known that the relativistic action for the point-like particle can be derived 
rigorously using only the Poincark invariunce [2, 31. So, it is natural to expect that 

paper is to prove this point. 
In section 2 we will present the general formalism. Thii formalism uses only 

the Lagrangian density and is based on geometrical ideas originating in the work of 
Lagrange, used systematically in particle mechanics by Souriau [4] and generalized 
to dynamical systems with an inlinite number of dcgrecs of freedom in (5-71 (see 
also [8]). Recently this formalism was used in the analysis of gauge invariance [9]. 
Here we use the same techniques to analyse the general case of a p-brane postulating 
the invariance with respect to reparametrizations of the world sheet and the usual 
Poincark invariance. Some comments regarding these invariance postulates are also 
made in this section. 

In section 3 we analyse the general conditions obtained in section 2 in the simplest 

Lagrangian (of the homogeneous formulation). We have included the analysis of this 
case for two reasons. First, the proof is different from the proofs in [2, 31 and does 
not use mhomology arguments as in [2]. Sccond, it is rather simple and illustrates 
the general ideas, so it is a good guide for the more complicated case p > 1. Let us 
mention that an analysis using similar ideas was done in [lo]. 

= 2, i.e. the relativistic string. We are able 
to prove that the Poincari: invariance and the rcparametrization invariance fix up 
to a multiplicative constant, the Lagrangian density in Minkowski spaces of dimen- 
sion different from 3; namely, we obtain the Nambu-Goto Lagrangian. In a three- 

8 $LT*$g S’Ateme”! is \.%!id for :he pJpF,bciC.otn action a .#e!!, 9,: p-pse cf L+* 

m - 1 i.e. the ~ ~ ~ ~ t ~ y ~ s d c  nartirlr, We fieriye !hp BSQZ! eunrewinn fer the r - -, -’-r--”--- 

In section 4 we analyse the case 

.t Permanent address: Dcpanment of nwxel ira l  I’hysics. lnslitute of Alomic Physics, Bucharest-Magurele, 
Romania. 

03054470/92/133797+15$04.50 @ 1992 IOP Publishing Ltd 3797 
/ 
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dimensional Minkowski space the Lagrangian is, in general, a sum of the Nambu- 
Goto term and a term of a ChernSimons nature. Rrms of this type have already 
appeared in the literature (see for instance [ll] formula (3.4.46)) but they are more 
general and have been postulated from ditierent considerations. Our analysis shows 
that there exists essentially a single expression of this type compatible with Poincar6 
and reparametrization invariance. 

The case p > 2 is not analysed here because of computational complexity. 

2. The consequences of the repurumetrizution and of the Poinear6 invarionce for a 
p-brane 

21. The general fomialisni 

We present here the gcncral formalism. Let S be a differentiable manifold of dimen- 
sion p + D. lb build a first-order Lagrangian formalism we need an auxiliary object, 
namely the bundle of 1-jets of pdimcnsional submanifolds of S ,  denoted J i ( S ) .  
This manifold is by definition: 

=u,,,J;(s), 
where J i ( S ) ,  is the manifold of pdimensional linear subspaces of the tangent space 
T,(S)  at S in the point s E S. This manifold is naturally fibred over S and we 
denote the canonical projection by T .  

on the open set U C S; here 
p = 1, ..., p and A = 1, ..., D .  Then, on the open set V x - ’ (  U) we shall 
choose the mordindtc system ( Z P , + ~ , X ; )  where by definition, the p-plane in 
Ts0(S)  corresponding to the sct of numbers ( Z ~ , V ! $ , ( X ~ ) ~ )  (here (z,”,$,”) are 
the coordinates of so E U ) is spdnncd by the tangent vectors 

Let us choose a coordinate system 

We Will systematically use the convention of summation over the dummy indices. 
The Lagrangian formalism describcs p-dimcnsional immersed submanifolds WU- 

ally given in a paramctrizcd form @ : P -+ S (P is a pdimensional manifold). 
We denote by & : P - J j ( S )  the natural lift of Q. In the local coordi- 
nates shown earlier, il’ a is givcn by x p  c ( z ” , + ~ ( z ) ) ,  then \j, is given by 
z p  c (.’,loA(x),(a+A/azp)(r)). A (local) Lagrangian funclion (or density) is 
a smooth real function I, dcfincd on a subset J ; ( S ) .  Then the Euler-Lagrange 
equalions for wn be written in the local coordinates above as follows 

We define now the PoincarbCartan form associated with the local Lagrangian L 
to be the p-form 0 ,  givcn in local coordinates by 
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Here CL?,’...’PP is the signature of the permutation (1,  ..., p) Y (pl, ..., @,,), a l l A  
is, by definition, 

and L2,;;;;,:ik is given by 

6GA E d t l A  - X c d x ”  (2.4) 

(Pk the group of the permutation of the numbers 1, ..., k and 1u1 is the Signature 
of a.) Note that Lz;;;;.’,zk is completely antisymmetric in the upper indices and also 
in the lower indices. 

The Lagrange-Souriau form uL is then defined locally by 

This ( p  f 1)-form has some remarkable properties rS-71: 
(Pl) uL given by (2.6) can be globally defined; more precisely, one can define a 

global ( p  + 1)-form U such that in any chart with local coordinates as above one can 
find a local Lagrangian L having the property U = uL [SI. 

(P2) The pdimensional immersed submanifold I : P - S satisfies the Euler- 
Lagrange equations (2.2) iff 

for any vector field Z on J: ( S) .  

aL I do,.  (2.6) 

(&)*( izuL)  = o 

(P3) A Lagrangian L gives trivial Euler-Lagrange equations iff 

(P4) A transformation Q, E Dif f ( J j (S ) )  is a Noethenan qmmerry for L (i.e. 
OL = 0. 

leaves the action functional unchanged up to a trivial action) iff 

@ * U L  = U L .  (2.7) 
By a trivial action we mean an action giving trivial Euler-Lagrange equations. 
It is this last property which will be the key to our proof. Let us note also that 

usually one mnsiders only restricted Noelhenan Jymmetries, Le. maps Q, which are of 

to J j ( S ) .  
Finally, for practical computations, we need an explicit expression for uL. By 

differentiating (2.3) and rearranging the terms, one gets after some computations the 
following expression: 

.c. L,,t: I.._~ L”rm: 3 = 4, where 4 E Qiif(Sj and 4 E ~;.“(j;(s)) is ae nsturai iift or’ 4 

where 
..... rt 

P O , . . . ! # *  
a L p  , , . . . , A *  

ax;’.. 
Po,....&* - 

u A o , . . . , A ~  = - LAa,. . . ,Ak 

and 

(2.9) 

.. . 

Here a hat over an index means, as usual, an omission. 
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22. The geometric fornialisni for U p-brune 

We particularize the general framework for the case of a p-brane. We take, in the 
general scheme from section 21, S = P x M .  Here P is the manifold of the 
parameters characterizing our extended object, with coordinates usually denoted by 
T O ;  a = 1, ...,p. For instance, for a point-like particle p = 1 and T parametrize 
the world line. For a string, p = 2 and the parameters ( T ' ,  r2)  describe the world 
sheet. If the string is open, then we can take P = R2, and if the string is closed, 
we can take P = R x SI. In general P can be an arbitraly Riemann manifold. 
Up to a point, the analysis is somewhat insensitive to the specific choice of P. We 
have denoted by A4 the D-dimensional Minkowski space, identified as usual with RD 
and with coordinates denoted by XP; p = 1, ..., D. The coordinates on J j ( S )  are 
( V I  X',  U',,). We now particularize (2.1)-(2.10). We have 

(2.11) 

(2.12) 

+ 6 X P 0  A ... A 6XP*  A dr""+' A ... A d r " p  (2.13) PO. .... P* 

where 

(2.14) 

and 

2.3. The reparunielrizotion invariance 

Next, we analyse the reparametrization invariance. Let [ E Diff(P). Then, the 
action of a reparametrization transformation on the manifold S is simply 

- ( r ) A b C ( r )  atb = 6:. 
aTa (2.19) 
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Then it is clear that the theory is reparametrization invariant iff & is a Noetherian 
symmetry, i.e. 

( J J %  = U L .  (220) 

for V t  E Diff(P) .  
It ki not hard to prove this condition is equivalent to 

*a0 b o , , , ~ , ~ b *  aao . . . . l a~  PO,....PL* o & = (det(A))ak,::,$;k (2.21) 

and 

= (det( (222) 

Let us comment on the physical significance of the reparametrization invariance. 
First, we remind the reader that a symmetry of the Euler-Lagrange equation of 
motion is a diffeomorphism of J, ' (S)  mapping solutions of these equations into 
solutions of the same equations. Noetherian symmetries are just a particular case. 
So, reparametrization invariance means in our case, that if 11l is a solution of (2.2) 
then by reparametrizing it we obtain a new solution rU o [  of the same equations (2.2). 

inis uansiaics piiyxcmiy 111 ~ i ic .  gcurrrcur~ ~ i i m a u c ~  UL ULG uic;ury IS. LUG p ~ a n ~ n -  

eters T have no physical meaning and can be changed at will by a reparametrization: 
in another words they are just some labels. 

belonging 
to the connected component of the identity in Diff(P), Le. ( E (Diff(P)),. If 
E (Diff(P)) ,  then without losing any information, we can consider in (2.21) and 

(2.22) that [ is an infinitesimal transformation, i.e. 

-I. A - - - . . . L - -  ..L.."!"- ,,.. :.. _L^ ̂ ^^- ".-." A."-"".,.- ^C .I.̂ .I.-,.-, :" +I.- m-nl 

In the following we will consider in (2.20) only the diffeomorphisms 

= T a  + a y T )  (2.23) 

with B infinitesimally small. We insert (2.23) into (2.21) and (2.22) and we keep only 
the lirst-order terms in 0. %king into account that B ki an arbitrary function, it is 
straightforward to establish that a::: and p::: do not depend on T and ais0 that they 
obey the following relations: 
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24. The Poincari invariance 
The proper orthochronous Poincark transformations act on S as follows 

& + ( T , X )  = ( 7 ,  L S  + a ) .  (2.27) 

Here a E M I RD and L E End(A4) is a proper orthochronous Lorentz 
transformation. An elementary computation yields: 

d L , + ( 7 , - ~ ,  U )  = ( 7 ,  L X  + a ,  L U )  (2.28) 
where 

(LU)”‘, = L”,U”,. (2.29) 

Then the condition of Poincark invariance is simply 

{ d L , + ) * O L  = O L .  ( 2 3 )  

It is elementaly to prove that (2.30) is equivalent to the fact that the functions 

,...>ab B O  (2.31) 

L ” “ Y . . . . L @ k Y ~ , p E ~ : : : : : ~  0 = p;:::::::: (2.32) 

for any proper orthochronous Lorentz transformation L ,  i.e. they are Lorentz covari- 
ant tensor functions. 

2.5. The line of coniputntion 
So, finally we get that the reparametrization and the Poincark invariance are equiv- 
alent to the fact that the functions U:::  and p:: :  depend only on U and verify the 
relations (2.24)-(2.26) and (2.31)-(2.32). After determining the most general form of 
U::: and p::: verifying these equations, we use (2.14)-(2.16) to determine the most 
general form of L. This programme is feasible in principle for any p ,  but in practice 
we have only succeeded in performing it for p = 1 and p = 2. These two cases will 
be treated in detail in the following two sections. 

U::: and p::: do not depend on A’ and also they obey the following relations: 

L”aYO...L@*”tuP1: ..._, ”* 0 4 L , O  = Y O , . . . , ” *  

3. The relativistic point-like particle 

3.1. The relevant forniulae 

First, we particularize the formulae (2.14) and (2.15) to the case p = 1. From (2.13) 
it is clear that in this case we have only three functions to analyse: uCu, p, and p,,”. 
(Because the indices U ,  b ,  ... can take only one value we have suppressed them.) 
From (2.14) we have, Cor k = 1 ,  

and from (2.15) for k = 0 and k = 1 ,  respectively, 
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3.2. Thefuncfions a,,” 

We first determine a,,”. From the Lorcntz covariance (2.31) and the symmetry in p 
and v (see (3.1)) it follows that a,,” is of the following form: 

a,,(U) = G,”.f(llUl12) + U’U”S(IIU113. 

C 11U11’z G,,,UPUUY (3.5) 

(3.4) 
Here Gpy is the Minkowski bilinear form on M, f and g are smooth functions 

- ”  _L. .-_..L.- 
01 me vdriaoie 

and we have taken into account that, according to section 25, U,,” is a only function 
of U .  

Now we use the reparametrization invariance as expressed by the formulae (224) 
anA I7 7 5 )  1, A S S ?  r n c n  tharn nwn mlnr:n..o k-nn-n 
U,... ,e.-“,. .I. “I. -.,- .111>1 I..” .1IYL.”,,a n,-L”,a,L. 

U’o,,  = 0 .  

f(C) = -Cs(C) 

Inserting (3.4) into (3.7) we easily get that 

Le. instead of (3.4) we can take 

O,,(U) = S(llul12)(U,,~u - G,”IIUI12). 

2CS’(C) + 3dC) = 0 

C3[g(C)]’ = constant. (3.9) 

( 3 4  
Inserting this relation into (3.6) we obtain a differential equation for the function 

9: 

which implies: 

we have three pOEihi!jtjPSI 

(a) constant > 0. In this case L must be defined only on the domain 

D,  = ~~~,x,u~lllull2 > 0 )  

g(c) = n l / ~ 3 / 2  

then (3.9) gives 

for some m E R. 
@) constant < 0. In this case L must be dcfined on the domain 

D- = {(T, x’, U)IIIUII~ < 01 
and (3.9) gives 

(3.10) 

g(c) = n ~ / ( - c ) ~ ~ ”  (3.11) 
for some m E R. 

(c) constant = 0. The Lagrangian can be dcfined everywhere and (3.9) gives 

g = 0. (3.12) 
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3.3. The Lagmngian 

We analyse these three cases separately, 

(a) From (3.1) and (3.10) we have 

?his system can be integrated easily, and we obtain 

T, X )  (3.13) 9 112 L ( T , S , U )  = -m(llUll-) 

with 1, and 1 arbitrary smooth functions of r and X. 

+ U ” ~ , ( T , X )  + i( 

@) In (3.13) we must change the sign of the expression under the square root. 
(c) In (3.13) we must put m = 0. 

3.4. The functions p, und prv 

We now analyse the functions p, and p,”. 
(a) Fnst we compute these functions using (3.2). (3.3) and (3.13). We get 

ai ai, 
p, = U” (2 - ( p  -.) + ---. ) a s p  ar (3.14) 

(3.15) 

Because p, and p,,” must depend only on U, prV is, in fact, constant and p, is 
linear in U: 

P,  = 2P,“ U” f c,. 

We now use (2.26). This relation gives, for k = 0, 

and, for k = 1, 

(3.16) 

(3.17) 

(3.18) 

The relation (3.15) is identically fulfilled and (3.17) yields 

c = 0 .  (3.19) 

Finally, the Lorentz covariance (2.32) imposes the condition that p,, is a Lo1ent-z 
invariant tensor. Because from (3.15) it follows that p,,“ must also be antisymmetric, 
we have two cases: 

)r 
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(i) D $ 2. Then p," = 0 so the last two terms in (3.13) give a null contribution 
to uL. According to property (P3) these terms form a total divergence and so they 
can be discarded. It follows that L is equivalent to 

(3.20) 

If the Minkowski bilinear form G,, is given by diag(G) = (l,-l, ...,- l), 
then (3.20) is the usual Lagrangian for the relativistic particle in the homogeneous 
formulation. 

L ( r , X ,  U )  = -ndllUII 2 112 . 

(5) D = 2. In this case we can have 
Pp,  = KE," (3.21) 

with E,," the completcly antisymmetric tensor in two dimensions. In this case we note 
that we can take 

1 = 0  1 , = -  K € , , X ' "  (3.22) 

and L becomes 

L ( T , S ,  U )  = - - ~ z ( ~ ~ U ~ ~ ~ ) ~ ~ ~  + K E ~ ~ X I ~ U " .  (3.23) 

Any other solution for I, and I satisfying (3.22) can only add a total divergence to 
the expression above. 

(h) One must change the sign of the expression under the square root in (3.20) 
and (3.23). ?his case corresponds to tachionic particles. 

(c) One can get a non-trivial Lagrangian only for D = 2, namely the last term in 
(3.23). 

We have reobtained the results of [2, 31 rather easily. 

4. The relativistic string 

4.1. The relevant fornirrloe 
As in section 3, we particularize the formulae (2.14) and (2.15) for the case p = 2. 
From (2.13) it follows that one must analyse the following functions: U$, .;Eu, p,,, 

-ab xwa &,.- n ,A\ PE" a,," ppvw. V " G  &*L LlYl l l  ( L A ? ,  

and from (2.15) 

(4.3) 

(4.4) 
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4.2. The funclions a::; 

We first determine a$. From the Lorcntz covariance property (2.31) and the sym- 
metry in p and U (see (4.1)) it follows that a$, must have the following form 

,,,ob = 1~ 1 ob 
!J" p Y f (11"1112)~11~2112)~("1~"2) )  

+ U , 2 U , 2 g " b ( . . ~ )  + ( U , ' U w 2  + U,'Up2)hab(...) + G , , k a b ( . . . ) .  

(4.6) 

Here f ,  g, h and 12 are smooth functions of the Lorentz invariants: 

e1 = 11~1112 C 2 -  =lI  " 211 2 C12 (U,,",) E G,,UP1UY2.(4.7) 

As in section 3 we first use the reparametrization invariance (2.24) and (2.25). In 
Also the indices a ,  b, ... are raised or lowerd with the metric 6ab. 

our case these relations are 

6,ba;d, (4.8) 

".,a$ = 0 .  (4.9) 

"Uc- aaEk = 6,a,, d ab - 6,"0$ - 
a u w ,  

and 

If we insert (4.6) into (4.9) wc can establish by a straightforward computation 
that, in fact U;", must bc of the form 

a a b  II" - - [(U,'U,2+ U,'U,?)(Ul,U2) - U,'U,'IIU,IIZ 

- ",2~,211"1112 - GP"(("1> ",I2 - l l " l l 1 2 1 1 ~ 2 1 1 2 ) 1 ~ a b  

x ( I /  "I I I? > II "2 112 > ( "I 9 "2 1) (4.10) 

where uab are smooth functions of the variables C1, C2 and Clz. Inserting (4.10) into 
(4.8) we will obtain a system of partial differential equations for the functions crab. It 
is more convenient to use instead of the variables C1, and C I 2  above, the variables 

(4.11) 
C1, C2 and 

A E ( C i 2 )  2 - C i f ? .  
(This change of variablcs is always possible in a convenient chart.) 

By some amputations, one arrives at the following system 

(4.12) 

(4.14) 

(4.15) 
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where, in (4.13) and (4.14), one supposes that Clz is expressed as a function of Cl, 
C2 and A (using (4.11)). 

Although the preceding system looks complicated, it is remarkable that it can be 
solved explicitly. The computations are tedious, but do not pose difficult problems so 
we. give only the final results. As in section 3, we have three possible choices for the 
domain of L. 

(a) D, { ( T ,  X ,  U)lA > 0). In this case we have 

(4.17) 

(4.18) 

(4.19) 

Here c, C are rcal constants and as before, C i a  is considered as a function of C1, 
Cz and A. But from (4.1) it is clear that we must have d2  = uZ1. This fixes C = 0 
in the formulae above. If we revert to the old variables C1, Cz and Clz it follows that 
we have 

(4.20) 

(4.21) 

@) D- 

(c) If L is defined everywhere, then necessarily 

{ ( T ,  .X, U)/A < 0). One must change the sign of the expression under 
the square root in (4.20)-(4.22). 

U&* = 0. (4.23) 

4.3. The Lagrangian 

Now, one considers (4.1) as a system for the function L. It is not very hard to 
integrate this system. One obtains the following results corresponding to the cases 
(a)-(c) above. 

(a) In this case 

Here ea* is the complctcly antisymmetric symbol defined with the convention 
and caul d;J are smooth functions of T and X. 

= 1, 

@) One changes the sign of the expression under the square root in (4.24). 
(c) One takes c = 0 in (4.24). 
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4.4. The finclions p::: 

Instead of analysing the functions o;Ew we fiat consider p, and pi,. 
(a) From (4.3), (4.4) and (4.24) one derives by direct computation that 

p . = + a b c  P v w ~ y , ~ y ~  + dzuu"a + c,, 

and 

p ; ~  = $ ( E Y b C P Y Y U W b  + d;,) 

where 

and 

___ 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Because the functions p:: :  must depend only on U, it follows that cPvw. d;", cP 

We can analyse now the consequences of (2.26). For k = 0 and k = 1 we have, 
must in fact be constants. 

respectively, 

(4.30) 

and 

UW,- = 6 f p i ,  - 6,Cp;,. (4.31) 

Inserting (4.25) and (4.26) into (4.30) and (4.31), respectively, we easily get that 

auwa 

we must have 

d z u  = 0 

c = 0 .  P 

(4.32) 

(4.33) 

The mefficients c p Y y  rcmain quite arbitrary, the only constraint being the com- 

Finally, (2.32) is equivalent to the Lorentz invariance of the tensor cPyw.  SO we 

(i) D # 3. Then we must have 

plete antisymmetly, as lollows lrom (4.27). 

have two distinct cases. 

C P V W  = 0 .  (4.34) 
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The equations (4.27)-(4.29) must now be considered as a system for the functions 
cpy.  d; and 1. It is not necessary to find the most general solution. Indeed, if 
these functions are such that (4.27)-(4.29) are identically satisfied, then it follows that 
the last three terms in (4.24) give a null contribution to uL, ie. they form a total 
derivative. So, L is equivalent to the usual Nambu-Goto Lagrangian: 

L ( T ? X ?  U )  = C K U I ,  U 2  - 11~111 2 II U 211 2 1 112 . (4.35) 

(ii) D = 3 In this case we can have: 

C p v w  = K E p y w  (4.36) 

for some real K .  

particular solution, e.g.: 
Again we must consider the system (4.27)-(4.29). As above, we need only a 

(4.37) CpY - 1  - z'CErVW,YW 

and d; and 1 can be taken to be zero. In this case (4.24) gives: 

L ( r , X , U )  = .[(UI, U?) ' -  llU,11211U2112]"2 + ~ K E ~ ~ ~ E ~ ~ U ~ , , U ~ ~ X ~ .  

Any other solution of (4.27)-(4.29) only adds a total derivative to this expression. 
One may ask if it is still necessary to analyse the conditions on the functions 

and p;b,,. That it is not the case can be seen as follows. Both expressions (4.35) and 
(4.38) can be easily seen to verify the following relations 

(4.38) 

L o &  = (det (A))L 

for any E E (Diff(P)),, and 

(4.39) 

L 0 &, = L (4.40) 

for any proper orthochronous Lorentz transformation L. Also changes L by a 
total divergence. 

These facts easily imply that (2.20) and (2.30) are identically satisfied, so indeed 
(4.35) and (4.38) are the most general solution of these invariance conditions, up to 
a total divergence. 

(b) One changes the sign of the expression under the square root in (4.35) and 
(4.38). 

(c) In this case we can have non-trivial Lagrangian defined everywhere iff D = 3, 
namely (4.38) with c = 0. 

5. Remarks 

(i) The Lagrangian (4.35) appearing in case (a) corresponds to the usual relativistic 
string submitted to the condition that every point of it is moving with a subluminal 
velocity. The case (b) obviously corresponds to a 'tachionic' string for which all pinu 
are travelling with supraluminal velocities. 
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(ii) It is interesting to note that the term of a ChernSimons nature appearing in 
(4.38) verifies (4.39) for any [ E Die (  P) .  This property is not shared by the usual 
Nambu-Goto Lagrangian (4.35). 

(iii) One could wonder if one could have obtained the same result using, instead 
of the invariance condition (2.7), the more restrictive condition 

However, a condition of this type for @ = 4 is equivalent to the strict invariance 
of the action functional with respect to 4. The condition (2.7) is more general in 
the sense that 4 can leave the action functional invariant, up to a trivial action. But, 
as remarked above, the Chern-Simons term is invariant with respect to translations 

only up to a total divergence. So the more restrictive invariance condition above 
rules out this contribution. 

6. Conclusions 

We have succeeded in deriving the Nambu-Goto Lagrangian only from invariance 
considerations. The proof is highly non-trivial; as always this shows that the starting 
point i.e. the symmetry considerations have a deep physical meaning. 

An expression of a ChernSimons character appears in a three-dimensional 
Minkowski space. Let us mention that the physical implications of a contribution 
of this type have been rccently analysed in the literature Ill]. 

It also seems desirable to extend the analysis to the general case of a p-brane. 
This has been done recently by a different computational method. 

It is clear that the formalism used above is powerful enough to analyse the case 
of two or more interacting objects, hut the computations will be very complicated. 
Nevertheless, it is easy to show that, in this formalism, one can have non-trivial 
interactions, so one is able to circumvent the well-known ‘no-interaction’ theorems 
(see [lo] and references cited therein). 

Another interesting problem is that it is well known that the Poliakov action iS 
usually preferred to the Namhu-Goto action. The method used in this paper is 
capable of dealing with this case also. However, one has to include new independent 
variables in the Lagrangian (namely the metrics of the parameter manifold) and to 
enlarge appropriately the group of Noetherian symmetries (including the Weyl scaling 
invariance also). It is cxpectcd that we will essentially obtain the Poliakov action in 
this way. The computations will be much more complicated. 

Finally we stress tha t  our results depend essentially on the very particular expres- 
sion of the PoincarC-Cartan form (2.3) which ensures the key properties (P3) and 
(P4). Let us note that the property (P2) depends only on the first two terms in (2.3). 
This explains why one finds other PoincarC-Cartan forms in the literature (e.g. [12]). 
However, as remarked in [6] ,  if one cuts the sum in (2.3) at a value strictly smaller 
than p, then the group of transformations verifying (2.7) is strictly smaller than the 
whole group of Noethcrian symmetries. One gets the whole group only for the whole 
sum. So, we can ask what results we would have obtained if instead of (2.3), we have 
used the Poincar&-Cartan form from [12]. In the case p = 1 the two forms coincide 
so there is no differcncc, but in the case p = 2, if one considers in (2.3) only the first 
two terms and imposes (2.20) and (2.30). one loses exactly the Nambu-Goto term. 
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